BRADLEY INTERNATIONAL AIRPORT
TAXIWAY E RECONSTRUCTION PROJECT
WINDSOR LOCKS, CT

DRAFT ENVIRONMENTAL ASSESSMENT

Prepared for:
34 Ella Grasso Turnpike, Suite 160 • Windsor Locks, CT 06096

Prepared by:
53 Regional Drive • Concord, NH 03301

This Environmental Assessment becomes a Federal document when evaluated and signed by the responsible FAA Official.

(Print Name) (Signature) (Date)

MARCH 2021
TABLE OF CONTENTS

1. Introduction ... 1
 1.1. Bradley International Airport Background and Location ... 1
 1.2. Description of Proposed Action .. 2
2. Purpose and Need .. 3
 2.1. Purpose ... 4
 2.2. Need .. 4
3. Alternatives ... 4
 3.1. Alternatives Evaluation Criteria .. 5
 3.2. Taxiway E Reconfiguration Alternatives .. 5
 3.2.1. No-Build Alternative ... 5
 3.2.2. Build Alternative: Taxiway E Reconfiguration (Preferred) ... 6
 3.3. Alternatives Summary and Conclusion .. 7
4. Affected Environmental and Environmental Consequences ... 7
 4.1. Biological Resources ... 8
 4.1.1. Ecological Communities ... 8
 4.1.2. Flora and Fauna .. 9
 4.1.3. State and Federal Listed Threatened and Endangered Species ... 9
5. Mitigation .. 11
 5.1. Restoration of Grassland Areas ... 11
 5.2. Proposed Monitoring ... 12
 5.3. Additional Project Conditions .. 12
 5.4. Conclusion .. 13
 6.1. EA Preparers ... 13
 6.2. Agencies and Organizations Contacted/Consulted ... 14
Figure 1: USGS Location Map ... 15
Figure 2: Project Area ... 17
Figure 3: NDDB Areas & Critical Habitat .. 19
Appendix A: SHPO Section 106 Memo .. 21
Appendix B: USFWS Official Species List .. 23
Appendix C: 2020 Survey Report (Rare Species) .. 29
Appendix D: Project Plans ... 45
1. INTRODUCTION
This Environmental Assessment (EA) addresses the potential social, economic, and environmental consequences associated with the proposed Taxiway (TW) E construction project at Bradley International Airport (the Airport), airport identifier BDL, located in Windsor Locks, Connecticut. The TW E project involves airfield improvements and taxiway reconfigurations.

Based upon the findings in previous studies/reports conducted for the Airport, the proposed improvements are required by the Federal Aviation Administration (FAA) in order to meet FAA standards, reduce confusion on the airfield by removing abandoned pavement associated with the decommissioned Runway 1-19, and improve safety by constructing and reconfiguring/relocating TW E to be within the decommissioned Runway 1-19 pavement. The reconfiguration of TW E will provide a more direct taxiway routing configuration from the mid-point of the terminal ramp to the Runway 24 End. Additionally, these improvements would increase the operational flexibility and efficiency of the Airport. The study on which these proposed improvements is based upon includes:

- Airport Master Plan Update (MPU) & Airport Layout Plan (ALP) (CHA Companies, December 2018)

This EA has been prepared in accordance with the National Environmental Policy Act (NEPA) of 1969; the Council on Environmental Quality (CEQ) regulations stated in 40 Code of Federal Regulations (CFR) Parts 1500-1508, the FAA “1050.1F Desk Reference” dated February 2020, FAA Order 5050.4B, “National Environmental Policy Act (NEPA) Implementing Instruction for Airport Projects”, and FAA Order 1050.1F, “Environmental Impacts: Policies and Procedures.”

If the potential impacts identified herein do not appear to be adverse or are such that they can be mitigated to a level below established significant impact thresholds, a Finding of No Significant Impact (FONSI) may be issued by the FAA. An Environmental Impact Statement would be required when one or more environmental impacts of a Proposed Action would be significant and mitigation measures would not reduce the impact(s) below significant levels.

1.1. BRADLEY INTERNATIONAL AIRPORT BACKGROUND AND LOCATION
The Airport is located in northern Connecticut about halfway between Hartford, Connecticut (approximately 12 miles to the south) and Springfield, Massachusetts (approximately 16 miles to the north). The Airport is situated on approximately 2,400 acres located in the towns of Windsor Locks, Windsor, Suffield, and East Granby, in Hartford County, Connecticut (Figure 1). The Airport is owned and operated by the Connecticut Airport Authority (CAA), a quasi-public agency established in July 2011 to develop, improve, and operate BDL and the state’s five additional general aviation airports. Operations at the Airport include both public/commercial and military use.

Airside facilities include two active use runways and one decommissioned runway. Runway 6-24 is considered the primary runway and is approximately 9,510 feet long by 200 feet wide. The crosswind runway, Runway 15-33, is approximately 6,847 feet long by 150 feet wide. Runway 1-19 has been
decommissioned (i.e., is no longer used as a runway and currently abandoned pavement) and is approximately 4,269 feet long by 100 feet wide. Additional airside facilities include associated lighting and navigational aids, parallel taxiways, and apron areas. Landside facilities include the passenger terminal facilities, parking areas, and roadways.

1.2. DESCRIPTION OF PROPOSED ACTION
The proposed project, hereafter referred to as the Proposed Action, consists of the following elements, which are necessary to meet the overall purpose of improving safety at the Airport:

Reconfigure and Reconstruct Taxiway E

The project includes shifting TW E to the west partially within the existing footprint of decommissioned Runway (RW) 1-19. Portions of the existing RW 1-19 pavement area would be reconstructed to become the new TW E. The TW E width requirement is 75 feet plus additional 30-foot paved shoulders for a total pavement width of 135 feet. The existing Runway 1-19 pavement is 100 feet wide with 20-foot-wide paved shoulders for a total width of 140 feet. The proposed TW E relocation will be centered on the existing Runway 1-19 pavement and will typically result in a smaller footprint of impervious pavement along the decommissioned runway. Relocating TW E will provide substantial additional space between the Taxiway and the adjacent facilities operated by Bombardier, UPS, and TAC Air. The existing TW E pavement would be converted to a taxi-lane (taxi-lane N) serving these existing facilities/tenants and would enable future apron expansions as needed and shown in the Ultimate Airport Layout Plan.

New intersection points would also be constructed at the northern and southern ends of the new TW E. In addition, the parallel TW T along RW 15-33 will be extended to establish a new intersection with the reconfigured TW E which will allow for further extension of TW T in the future in accordance with the current Ultimate Airport Layout Plan. Taxi-lane M will also get a new stub section that extends into the existing TW E/new Taxi-lane N. This new stub section will eliminate a potential “hot spot” area and divert aircraft traffic exiting the TAC Air apron onto Taxi-lane N prior to entering TW T. The Proposed Action also includes new airfield layout and lighting systems, FAA communication cable systems, airfield signage, drainage improvements, and pavement markings associated with the new taxiway and other geometric modifications.

Remove abandoned decommissioned RW 1-19 pavement and existing TW C/E and E/T pavements

Approximately 7.1 acres of existing pavement would be removed from portions of decommissioned RW 1-19 and TW’s C/E and E/T. The pavement removal would accommodate the reconfiguration of the taxiway system while removing unnecessary pavement surfaces necessary for the proposed geometric layout modifications. Pavement removal areas would be restored to vegetated grassland and will mitigate for potential impacts to state listed rare species.
Stockpile and Staging Area

The stockpile and equipment/material staging area is an approximately 6.5-acre grass lot located near Gate E-18 on Light Lane Road. This area consists of frequently mowed turfgrass and portions of this area are currently used to store snow removal equipment and other machinery. The project work areas will use a temporary gate in the existing perimeter fence and use Taxilane M shoulder pavement to access the work zones. A temporary gravel access road will be installed within the grassed portion of the staging area to better eliminate tracking during hauling operations onto the aircraft operations area and haul roads.

2. PURPOSE AND NEED

The Purpose and Need Statement in a NEPA document is a formal statement of the overall problems to be addressed and justification of a Proposed Action. The statement documents the justification for the project and provides the basis for evaluating the effectiveness of alternatives.
2.1. PURPOSE
The purpose of the Proposed Action is to improve airfield operational efficiency and safety by complying with federal regulations and current FAA taxiway design standards.

2.2. NEED
The Master Plan Update (MPU) completed in 2018 determined the Taxiway E realignment is needed to address existing and future shortcomings of the taxiway facilities. Shortcomings include:

- The entrance from the TAC Air apron to TW E lacks clear entry and exit lanes, creating the potential for conflicts between aircraft using the same pavement while entering/exiting the apron area and taxiway.
- At the TW T/E intersection there is a direct access situation, which is where aircraft may directly access a runway without making a turn. This configuration makes it more likely aircraft may unintentionally enter a runway, resulting in possible conflicts with aircraft using the runway.
- The centerline of the existing TW E and edge of ramp pavement (Taxiway Object Free Area) are closer than desired, making it possible for aircraft on the taxiway and ramp to come into contact. There is also insufficient space for future apron expansion with the existing configuration.
- Taxiway C/E and Taxiway E/T have acute angle intersections, which limit the ability of pilots approaching an intersection to see other aircraft on a taxiway or runway. The FAA recommends right-angle intersections because it improves visibility. The TW E reconstruction/reconfiguration project is needed to improve visibility and increase safety at the Airport.

3. ALTERNATIVES
The following is a summary of the alternatives considered during the evaluation process to select the Proposed Action at BDL. The Proposed Action was selected based upon the evaluation of alternatives for each of the major project elements. The analysis is based on the 2018 Master Plan Update (MPU). Alternatives, including the no build alternative, were evaluated for each of the proposed project elements in accordance with the criteria described below.

For purposes of this EA, the alternatives were progressed at equivalent design levels to provide a fair comparison of economic, social, and environmental consequences. Only one build alternative satisfies the project purpose and need, therefore one build and the no-build alternatives were considered. The following is a summary of the alternatives developed for the project elements. Each of the alternatives was evaluated in accordance with the criteria described below.
3.1. **Alternatives Evaluation Criteria**

Criteria considered in the development and evaluations of the alternatives are listed below. The feasibility of each of the alternatives was evaluated based upon how well they would meet these criteria, as described below.

- **FAA Design Standards**: Does the alternative address the design deficiencies described in the purpose and need statement, based on the Federal Aviation Administration (FAA) Advisory Circular (AC) 150/5300-13A, Airport Design, and Code of Federal Regulations (CFR) Part 77, Objects Affecting Navigable Airspace, to the maximum extent feasible?

- **Facility Requirements**: Does the alternative meet the existing and future operational needs of the Airport and is the alternative feasible for implementation?

- **Environmental Impact**: What are the potential environmental impacts associated with implementation of the alternative? To what extent does the alternative further achievement of the Airport’s environmental goals?

- **Development Costs**: Does the alternative have reasonable development costs in comparison to other alternatives that achieve the same goal?

- **Operational Flexibility**: Does the alternative allow flexibility from an operational standpoint?

3.2. **Taxiway E Reconfiguration Alternatives**

3.2.1. **No-Build Alternative**

The No-Build Alternative offers no changes to the existing layout at BDL.

The Taxiway E No-Build Alternative was assessed against five evaluation factors; the results are below:

- **FAA Design Standards**: The No-Build Alternative does not address the FAA standards related to the taxiway realignment.

- **Facility Requirements**: The No-Build Alternative would not address existing and future shortcomings of the taxiway facilities which can lead to congestion at airport Hot Spots and safety concerns.

- **Environmental Impact**: The No-Build Alternative does not involve any ground disturbance. Therefore, no environmental impacts are expected.
• **Developmental Costs:** This alternative would have no costs associated since no action would be taken.

• **Operational Flexibility:** This alternative does not improve operational flexibility as it does not alter the existing layout of the Airport.

3.2.2. Build Alternative: Taxiway E Reconfiguration (Preferred)

The Build Alternative proposes to relocate and reconfigure Taxiway E.

The Taxiway E Relocation Alternative was assessed against five evaluation factors; the results are below:

• **FAA Standards:** The Taxiway E reconfiguration would provide right angle intersections at Taxiway C/E and Taxiway E/T. The Proposed Action would improve safety and meet the project need by reconfiguring the existing acute angle intersections at the above locations.

• **Facility Requirements:** The Taxiway E reconfiguration addresses existing and future shortcomings of the taxiway facilities which can lead to congestion at airport Hot Spots and safety concerns. The Build Alternative also provides additional space for future apron expansion for airport facilities and tenants.

• **Environmental Impact:** The Proposed Action would result in approximately 5.69 acres of new taxiway pavement surfaces (within existing grassland) and 3.54 acres of temporary ground disturbance (within existing grassland) associated with construction of the proposed project and required grading. The Proposed Action would also remove approximately 6.21 acres of existing pavement and restore these areas to grassland. Overall, the Proposed Action would result in a net reduction of approximately 0.52 acres of impervious pavement surfaces. There are no jurisdictional wetlands or surface waters proximal to the project area. Impacts are located entirely on Airport property. The Connecticut Department of Energy and Environmental Protection Natural Diversity Database (NDDB) has identified documented occurrences of state listed rare species on Airport property and in the vicinity of the Proposed Action. Sand barren critical habitat has also been identified on the Airfield in the vicinity of the Proposed Action. Impacts on state listed rare species and critical habitats as well as proposed mitigation measures are discussed in Chapters 4 and 5 of this EA. Section 106 consultation was completed, and the Connecticut State Historic Preservation Office (SHPO) has determined that no historic properties would be affected by the Proposed Action.

• **Developmental Costs:** The preliminary cost estimate for the Taxiway E project is $17,400,000.

• **Operational Flexibility:** The Taxiway E alternative improves operational flexibility by reducing taxi times and distances, reducing congestion, and providing improved hold locations.
3.3. **ALTERNATIVES SUMMARY AND CONCLUSION**

The Build Alternative fulfills the purpose and need, meets FAA standards, satisfies the airport facility requirements, and improves operational flexibility of the airport. Based on this analysis, the Build Alternative is the preferred alternative.

4. **AFFECTED ENVIRONMENTAL AND ENVIRONMENTAL CONSEQUENCES**

There are 14 environmental impact categories identified by FAA Order 1050.1F. Per direction provided in FAA Guidance Memo #2, 2011, “Guidance on Preparing Focused, Concise and Timely Environmental Assessments”, it is not the intent of this document to provide detailed discussion or analysis of all categories. Only those areas where there is the potential for significant environmental impact caused by the Proposed Action, or where there are uncertainties which require evaluation, are identified in this document. This section provides a description of environmental conditions within the geographic area that may be affected by the Proposed Action. Information pertaining to the affected environment was obtained through on-site investigations, a review of published information, agency correspondence, and discussions with Airport personnel and public officials.

Implementation of the Proposed Action would have minimal or negligible effects on the human and/or natural environment. Efforts have been made to minimize those impacts to the maximum extent practicable. The entire project area is located on Airport property on lands designated for aviation use. There are limited environmental resources in the vicinity of the Proposed Action. Therefore, for the following potential environmental resources/impact categories, further analysis is not required because the resource is not present within the project area or the No Action or Proposed Action would not affect it:

- Air Quality
- Climate
- Coastal Resources
- Department of Transportation Act, Section 4(f)
- Farmlands
- Hazardous Materials, Solid Waste, and Pollution Prevention
- Historic, Architectural, Archaeological and Cultural Resources
- Land use
- Natural Resources and Energy Supply
- Noise and Compatible Land Use
- Socioeconomic, Environmental Justice, and Children’s Environmental Health and Safety/Public Health and Safety
- Visual Effects and Light Emissions
- Water Resources (Including Wetlands, Floodplains, Surface Waters, Groundwater, and Wild and Scenic Rivers)
The project area identified for review in the analysis described below includes the areas identified as shown on Figure 2. The Proposed Action was reviewed by the Connecticut State Historic Preservation Office (SHPO) to satisfy Section 1006 Requirements. The CT SHPO determined that no historic properties would be affected by the Proposed Action (Appendix A).

The Proposed Action, as defined in Section 3, could potentially affect the following environmental categories:

4.1. **Biological Resources**

Biological resources refer to the various types of flora (plants) and fauna (mammals, birds, fish, reptiles, amphibians, insects, etc.), including state and federally listed threatened and endangered species, in a particular area. It also encompasses the habitats supporting the various flora and fauna including rivers, lakes, wetlands, forests, and other ecological communities.

4.1.1. **Ecological Communities**

Most of the Airport and surrounding areas have been significantly disturbed by prior airport construction, industrial/commercial development, residential development, agricultural activities, and existing transportation infrastructure. The habitat in the vicinity of the Proposed Action consists of maintained grassland with a network of paved airfield surfaces. The Connecticut Department of Energy and Environmental Protection (CT DEEP) has identified Sand Barren Critical Habitat on the airfield (Figure 3). Sand Barren habitat consists of dry sandy deposits with woody or grassy vegetation maintained (under natural conditions) by fire. Subtypes include sparsely vegetated sand, sandplain grassland, pitch pine scrub, riverine dredge spoils, and other/unique habitat. The subtype found on the airfield consists of sandplain grassland, and while the vegetation is no longer maintained by fire, airport maintenance activities (mowing) help to artificially maintain the sandplain grassland habitat. Further information regarding flora and fauna species associated with these ecological communities is presented in Section 4.1.2.

The Proposed Action will result in approximately 4.3 acres of impact to NDDB mapped Sand Barren Critical Habitat. Impacts are associated with the required taxiway grading and construction of the new TW E/T intersection. The Proposed Action will result in an additional 5.69 acres of new pavement within existing grassland areas (not all new pavement is located withing Sand Barren Critical Habitat). However, the Proposed Action also includes the removal of 6.21 acres of existing impervious pavement surfaces. Therefore, the overall project will result in an approximately 0.52-acre reduction in impervious pavement surfaces. Areas of pavement removal will be restored to grassland following the mitigation approach outlined in Chapter 5. Ultimately, the Proposed Action will result in an additional 0.52 acres of grassland on the airfield.
4.1.2. Flora and Fauna
The habitat in the vicinity of the Proposed Action consists of a mix of warm-season and cool-season grassland. Common and dominant species in the warm season grassland areas include: little bluestem (*Schizachyrium scoparium*), blue curl (*Trichostema dichotomum*), orange grass (*Hypericum gentianoides*), tufted hair-sedge (*Bulbostylis capularis*), frostweeds (*Crocanthemum spp.*), yellow wild indigo (*Baptisia tinctoria*), sand sedge (*Cyperus filiculmis*), dewberry (*Rubus flagellaris*), birds foot violet (*Viola pedata*), sand violet (*Viola sagittata*), bladder campion (*Silene vulgaris*), jointweed (*Polygonella articulata*), buttonweed (*Diodia teres*), sweet everlasting (*Gnaphalium obtusifolium*), lichen (*Cladonia rangiferina*), hair capped moss (*Polytrichum sp.*), bracted plantain (*Plantago aristate*), rabbits foot clover (*Trifolium arvene*), red top (*Agrostis gigantea*), asters (*Symphotrichum spp.*), and goldenrods (*Solidago spp.*). A few shrub species are present including a few short-cropped (from mowing activities) scrub oaks (*Quercus ilicifolia*), lowbush blueberry (*Vaccinium angustifolium*) and juniper (*Juniperus communis*). Common and dominant species in the cool-season grassland include fescues (*Festuca spp.*), red top, English plantain (*Plantago lanceolata*), red clover (*Trifolium pratense*), white clover (*T. repens*), rabbits foot clover, ragweed (*Ambrosia artemisifolia*), deer tongue grass (*Dichanthenium clandestum*), crabgrass (*Digitaria sanguinalis*), cinquefoil (*Potentilla spp.*), wood sorrel (*Oxalis spp.*), fleabane (*Erigeron spp.*), spotted knapweed (*Centaurea maculosa*), asters, horseweed (*Conyza spp.*), yarrow (*Achillea millefolium*), spurge (*Euphorbia spp.*) and bladder campion. There are transition zones on the airfield where the warm-season and cool-season grasslands overlap and species from both communities coexist.

The use of the active airfield as wildlife habitat is discouraged due to the safety concerns associated with wildlife and plane interactions. The existing perimeter fence encompasses the airfield and is designed to provide safety and security by preventing unauthorized trespassing/access, as well as deterring wildlife from entering the active airfield and becoming a safety hazard to aircraft and the general public. Wildlife found on the airfield in the vicinity of the proposed action consists of primarily birds, small mammals, and insects.

Further information on potential rare, threatened, and endangered species is provided in the following sub-section.

4.1.3. State and Federal Listed Threatened and Endangered Species
The U.S. Endangered Species Act (ESA) directs all federal agencies to work to conserve endangered and threatened species and to use their authorities to further the purposes of the ESA. Section 7 of the ESA, titled “Interagency Cooperation,” is the mechanism by which federal agencies ensure the actions they take, including those they fund or authorize, do not jeopardize the existence of any listed species. Endangered species are those which are in danger of extinction throughout their range or a significant portion of its range. Threatened species are those which are likely to become endangered within the foreseeable future throughout all or a significant portion of their range. Candidate species are species for which the United States Fish and Wildlife Service (USFWS) has sufficient information on the biological vulnerability and threats to support issuance of a proposal list, but issuance of a proposed rule is currently precluded by higher priority listing actions. Candidate species do not receive substantive or procedural
protection under the ESA. However, USFWS does encourage federal agencies and other appropriate parties to consider these species in the planning process.

The Connecticut Endangered Species Act, passed in 1989, protects state listed endangered species, threatened species, and species of special concern. The Connecticut Department of Energy and Environmental Protection (CT DEEP) administers and enforces the State’s Endangered Species Act through the Natural Diversity Database (NDDB) program.

Consultations with the USFWS and NDDB were initiated to determine the existence of any documented federal or state-listed threatened or endangered species in the vicinity of the Airport.

The latest NDDB mapping was reviewed, and the majority of the Airport property is located within NDDB Area polygons #16484 and #16353. The Proposed Action is located almost entirely within NDDB Area #16484, with the exception of the southeastern corner in the vicinity of the TW E/T intersection, and the stockpile and staging area. A request for NDDB State Listed Species Review was submitted on December 3, 2020, however as of March 5, 2021 a response has not been received. Based on prior coordination with NDDB for previous projects at BDL, the NDDB program has identified the species included in Table 1 as documented on, or potentially occurring in the vicinity of Airport Property:

Table 1. State Listed Species Identified by NDDB as Potentially Occurring in the Vicinity of BDL

<table>
<thead>
<tr>
<th>TYPE</th>
<th>COMMON NAME</th>
<th>SCIENTIFIC NAME</th>
<th>CT LISTING STATUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beetle</td>
<td>Bombardier Beetle</td>
<td>Brachinus cyanipennis</td>
<td>Species of Special Concern</td>
</tr>
<tr>
<td>Beetle</td>
<td>Big Sand Tiger Beetle</td>
<td>Cicindela formosa generosa</td>
<td>Species of Special Concern</td>
</tr>
<tr>
<td>Beetle</td>
<td>Ground Beetle</td>
<td>Harpalus erraticus</td>
<td>Species of Special Concern</td>
</tr>
<tr>
<td>Dragonfly</td>
<td>American Rubyspot</td>
<td>Hetaerina americana</td>
<td>State Threatened</td>
</tr>
<tr>
<td>Moth</td>
<td>Scrub Euchlaena</td>
<td>Euchlaena madusaria</td>
<td>State Threatened</td>
</tr>
<tr>
<td>Moth</td>
<td>Brown-bordered geometry</td>
<td>Eumacaria latiferrugata</td>
<td>State Threatened</td>
</tr>
<tr>
<td>Moth</td>
<td>Violet Dart Moth</td>
<td>Euxoa violaris</td>
<td>Species of Special Concern</td>
</tr>
<tr>
<td>Moth</td>
<td>Phyllira Tiger Moth</td>
<td>Grammia phyllira</td>
<td>State Endangered</td>
</tr>
<tr>
<td>Moth</td>
<td>Spinose Flower Moth</td>
<td>Schnia spinosa</td>
<td>Species of Special Concern</td>
</tr>
<tr>
<td>Moth</td>
<td>Pine Barrens Zanclognatha</td>
<td>Zanclognatha martha</td>
<td>State Threatened</td>
</tr>
<tr>
<td>Plant</td>
<td>Davis’ Sedge</td>
<td>Carex davisii</td>
<td>State Threatened</td>
</tr>
<tr>
<td>Plant</td>
<td>Low frostweed</td>
<td>Crocanthemum propinquum</td>
<td>Species of Special Concern</td>
</tr>
<tr>
<td>Bird</td>
<td>Grasshopper Sparrow</td>
<td>Ammodramus savannarum</td>
<td>State Endangered</td>
</tr>
<tr>
<td>Bird</td>
<td>Upland Sandpiper</td>
<td>Bartramia longicauda</td>
<td>State Endangered</td>
</tr>
<tr>
<td>Bird</td>
<td>Bobolink</td>
<td>Dolichonyx oryzivorus</td>
<td>Species of Special Concern</td>
</tr>
<tr>
<td>Bird</td>
<td>Horned Lark</td>
<td>Ereomphila alpestris</td>
<td>State Endangered</td>
</tr>
<tr>
<td>Bird</td>
<td>American Kestrel</td>
<td>Falco sparverius</td>
<td>Species of Special Concern</td>
</tr>
<tr>
<td>Bird</td>
<td>Savannah Sparrow</td>
<td>Passerculus sandwichensis</td>
<td>Species of Special Concern</td>
</tr>
<tr>
<td>Bird</td>
<td>Vesper Sparrow</td>
<td>Passerculus sandwichensis</td>
<td>State Endangered</td>
</tr>
<tr>
<td>Bird</td>
<td>Eastern Meadowlark</td>
<td>Sturnella magna</td>
<td>State Threatened</td>
</tr>
<tr>
<td>Bird</td>
<td>Brown Thrasher</td>
<td>Toxostoma rufum</td>
<td>Species of Special Concern</td>
</tr>
<tr>
<td>Reptile</td>
<td>Eastern Box Turtle</td>
<td>Terrapene carolina carolina</td>
<td>Species of Special Concern</td>
</tr>
<tr>
<td>Reptile</td>
<td>Eastern Hognose Snake</td>
<td>Heterodon platirhinos</td>
<td>Species of Special Concern</td>
</tr>
<tr>
<td>Reptile</td>
<td>Spotted Turtle</td>
<td>Clemmys guttata</td>
<td>Species of Special Concern</td>
</tr>
</tbody>
</table>
An Official Species List from the USFWS was generated on December 31, 2020 (Appendix B). The Official Species List did not identify any federally endangered, threatened, or candidate species. The Official Species List also did not identify any designated critical habitat for any Federally listed species in the vicinity of the Proposed Action. The proposed project does not require any tree clearing activities.

Impacts to state listed rare species will be minimized and avoided to the maximum extent practicable. Rare plant surveys for low frostweed were conducted by GeoEnvironmental, Inc. (GZA) in the Summer of 2020. GZA identified populations of low frostweed in portions of the airfield in the vicinity of the TW E project, however, no verified occupied habitat or potential high-quality habitat is located within the proposed impact areas. Additional information regarding rare species and their locations and presence/absence can be found in the attached 2020 Survey Report (Appendix C). As mentioned above, the Proposed Action will result in a net reduction of approximately 1.42 acres of pavement surfaces. The pavement removal areas will be restored to grassland and seeded using an NDDB approved warm-season grass seed mix. Additional information on the proposed mitigation for rare species is included in Chapter 5 below.

5. MITIGATION
The proposed mitigation approach for impacts to Sand Barren Critical Habitat as well as potential impacts to state listed rare species is outlined below. Since a response specific to the Proposed Action (TW E project) has not been received from NDDB at the time of writing of this EA document, the proposed mitigation approach is based on prior coordination, recommendations, and conditions imposed on previous BDL projects of similar scope by NDDB.

5.1. RESTORATION OF GRASSLAND AREAS
Initial grading of areas that will convert grassland habitats to pavement or other graded areas will have the existing topsoil removed and stockpiled on site for re-use in the conversion of existing paved areas to grassland. The topsoil recovery will preserve some rootstock and seed stock allowing faster establishment of native warm season grassland habitats. Prior to removal of topsoil, the depth of topsoil shall be evaluated by a biologist to determine how much of the soil will be removed and stockpiled for reuse. In settings like BDL, there may be only 2-3” of soil recovery due to the sandy, thin, nature of the existing topsoil on the site. In addition, it is anticipated that additional topsoil material will need to be imported to supplement the native stockpiled topsoil material. The imported topsoil shall be mixed on site with native materials to approximate the existing consistency and organic content of the native topsoil. It is anticipated that imported loam and sand will need to be mixed on site (expected to be at a roughly 3:4:1 ratio) to approximate the texture of the existing topsoil material. Lab analysis of the existing removed topsoil will need to be completed by the successful Contractor to determine the organic content and texture of the native topsoil for a more accurate ratio of the final imported topsoil and sand mixture. Any created soils will be sourced from weed and invasive species free areas and shall be inspected by a biologist for approval prior to use. The areas of proposed grassland restoration will be prepped with native
sandy material for the base and following final pavement of the taxiway, replacement of the on-site topsoil and/or imported loam/sand topsoil mixture will occur. Following grading of the topsoil, a native warm season grassland seed mix will be applied. The proposed seed mix will be composed of at least 50 percent little bluestem.

5.2. **PROPOSED MONITORING**

In order to ensure that grassland habitat is successfully restored, two years of post-construction monitoring will occur. The post-construction monitoring will examine the status and progress of the restored grassland areas two times per growing season (June and September) following construction. At each observation, documentation on plant cover and plant species will be taken. A year-end report with site photos, as well as GIS maps of the grassland restoration area showing total plant cover, species and habitat distribution, will be provided with an assessment of the current condition and any recommendations on improvements. At the end of Year 2 post-construction monitoring, a final map showing the actual grassland habitat created will be produced to document if any or all of the restoration areas provide effective grassland habitat for the state listed species identified by NDDB and if not, what corrective actions could be employed to improve habitat.

5.3. **ADDITIONAL PROJECT CONDITIONS**

In order to further protect state-listed rare species the following protection measures will be implemented over the course of the project.

- Workers will NOT be allowed to travel overland from one work area to the next. The contractor will be required to access all work areas from the closest point of pavement or concrete (i.e., non-habitat areas).
- Contractors will be notified of rare species occurrences within the work areas and given fact sheets to help them identify a potentially rare species (e.g., snakes and turtles).
- In the event that a species of conservation concern finds its way into the work area, CAA will identify, and have on retainer, a qualified biologist who has a valid collector’s permit to remove and relocate the animal to a safer location outside of and away from the work area. The contact information for this person will be given to the contractors awarded the construction contract.
- Contractors will be required to observe and comply with the posted speed limits (15 mph) on all taxiways and service roads while accessing the work areas. This would help to prevent any wildlife collisions on the pavement surfaces.
- Prior to start of work, CAA will contract with a qualified biologist to have available on call to conduct a prework survey to re-locate any rare species that may be found in the potential disturbance areas, should the need arise.
- If work is conducted outside the nesting season (between September 1st and March 1st) potential adverse impacts to state-listed bird species will be minimized. However, if this time...
of year restriction is not possible and work will be conducted during March, April, May, June, July or August then an ornithologist (bird expert) will be hired to conduct on-site monitoring for breeding birds within the projected work areas to determine if there is any evidence of nesting activity for the target species on the construction site or immediate buffer area adjacent to the site.

Nesting behavior would include:
- Carrying of material to build nests within construction site or immediate buffer area
- Carrying food or feeding young
- Carrying fecal sacks from a nest
- Mate feeding
- Observation of nest
- Observation of chicks
- Copulations
- Auditory evidence of chicks

If evidence of nesting is observed by the ornithologist, then all work activities must cease and the Airport must contact the NDDB for further evaluation on conservation measures to protect the nesting bird species from project activities.

5.4. CONCLUSION
Based on the mitigation approach and project conditions described above, the Proposed Action is not anticipated to have a significant impact on state listed rare species or critical habitat. The proposed project will result in a net reduction of 0.52 acres of impervious pavement surfaces which will be converted to grassland. Approximately 6.21 acres of existing pavement will be removed and restored to grassland as outlined above, in order to help mitigate and offset the 5.69 acres of new pavement proposed in existing grassland. Coordination with NDDB will continue throughout the duration of the project to ensure potential impacts are avoided and minimized to the maximum extent practicable.

6. LIST OF PREPARERS, AGENCIES, AND PERSONS CONSULTED

6.1. EA PREPARERS
Stephen Hoffmann, Senior Environmental Analyst, McFarland-Johnson, Inc., 426 Industrial Avenue, Suite 164, Williston, VT 05495
Jed Merrow, Environmental Manager, McFarland-Johnson, Inc., 53 Regional Drive, Concord, NH 03301
6.2. **AGENCIES AND ORGANIZATIONS CONTACTED/CONSULTED**

Federal Aviation Administration, New England Region, Airports Division (ANE-600), 12 New England Executive Park, Burlington, MA 01803. Contact: Richard Doucette, Environmental Manager (781) 238-761

Connecticut Department of Economic and Community Development, State Historic Preservation Office, 450 Columbus Boulevard, Suite 5, Hartford, CT 06103

Connecticut Department of Energy and Environmental Protection, Natural Diversity Data Base Program, 79 Elm Street, Hartford, CT 06106

U.S. Fish and Wildlife Service, New England Field Office, 70 Commercial Street, Suite 300, Concord, NH 03301

The Connecticut Airport Authority, Bradley International Airport Terminal A, 3rd Floor, Administrative Offices, Windsor Locks, CT 06096

GZA GeoEnvironmental, Inc., 1350 Main Street, Suite 1400, Springfield, MA 01103. Contact: Steven Riberdy, Senior Ecologist
FIGURE 1: USGS LOCATION MAP
CAA TAXIWAY E CONSTRUCTION PROJECT
BRADLEY INTERNATIONAL AIRPORT - WINDSOR LOCKS, CT

USGS LOCATION MAP

Airport Property Boundary
TW E Project Area
TW E Stockpile & Staging Area
Town Boundary

SCALE: 1 inch = 3,000 feet
DATE: MARCH 2021
FIGURE: 1
FIGURE 2: PROJECT AREA
FIGURE 3: NDDB AREAS & CRITICAL HABITAT
APPENDIX A: SHPO SECTION 106 MEMO
December 23, 2020

Mr. Stephen Hoffmann
McFarland-Johnson, Inc.
426 Industrial Avenue, Suite 164
Williston, VT 05403
(via email only to shoffmann@mjinc.com)

Subject: Bradley International Airport: Taxiway E Construction
Windsor Locks, Connecticut

Dear Mr. Hoffmann,

The State Historic Preservation Office (SHPO) has reviewed your request for our comments regarding the referenced project. SHPO understands that the proposed undertaking consists of constructing Taxiway E, which will require ancillary improvements and existing taxiway reconfigurations. Specifically, Taxiway E will be constructed within the footprint of decommissioned Runway 1-19; construction related access and staging will utilize existing infrastructure. The proposed activities will receive funding from the Federal Aviation Administration and require permitting from the Connecticut Department of Energy and Environmental Protection.

There are no archeological sites or properties listed in the National Register of Historic Places recorded within or in the immediate vicinity of the proposed project area. As noted in the review request, all activities will occur within previously disturbed areas. Therefore, it is unlikely that the proposed activities will impact archaeological deposits. Based on the information provided to our office, it is SHPO’s opinion that no historic properties will be affected by the proposed undertaking.

SHPO appreciates the opportunity to review and comment upon this project. These comments are provided in accordance with Section 106 of the National Historic Preservation Act, as amended. For additional information, please contact Catherine Labadia, Staff Archeologist, at (860) 256-2764 or catherine.labadia@ct.gov.

Sincerely,

Jonathan Kinney
Deputy State Historic Preservation Officer
APPENDIX B: USFWS OFFICIAL SPECIES LIST
In Reply Refer To:
Consultation Code: 05E1NE00-2021-SLI-0854
Event Code: 05E1NE00-2021-E-02578
Project Name: Bradley International Airport TW E Relocation Project

Subject: List of threatened and endangered species that may occur in your proposed project location or may be affected by your proposed project

To Whom It May Concern:

The enclosed species list identifies threatened, endangered, proposed and candidate species, as well as proposed and final designated critical habitat, that may occur within the boundary of your proposed project and/or may be affected by your proposed project. The species list fulfills the requirements of the U.S. Fish and Wildlife Service (Service) under section 7(c) of the Endangered Species Act (Act) of 1973, as amended (16 U.S.C. 1531 et seq.).

New information based on updated surveys, changes in the abundance and distribution of species, changed habitat conditions, or other factors could change this list. Please feel free to contact us if you need more current information or assistance regarding the potential impacts to federally proposed, listed, and candidate species and federally designated and proposed critical habitat. Please note that under 50 CFR 402.12(e) of the regulations implementing section 7 of the Act, the accuracy of this species list should be verified after 90 days. This verification can be completed formally or informally as desired. The Service recommends that verification be completed by visiting the ECOS-IPaC website at regular intervals during project planning and implementation for updates to species lists and information. An updated list may be requested through the ECOS-IPaC system by completing the same process used to receive the enclosed list.

The purpose of the Act is to provide a means whereby threatened and endangered species and the ecosystems upon which they depend may be conserved. Under sections 7(a)(1) and 7(a)(2) of the Act and its implementing regulations (50 CFR 402 et seq.), Federal agencies are required to utilize their authorities to carry out programs for the conservation of threatened and endangered species and to determine whether projects may affect threatened and endangered species and/or designated critical habitat.
A Biological Assessment is required for construction projects (or other undertakings having similar physical impacts) that are major Federal actions significantly affecting the quality of the human environment as defined in the National Environmental Policy Act (42 U.S.C. 4332(2)(c)). For projects other than major construction activities, the Service suggests that a biological evaluation similar to a Biological Assessment be prepared to determine whether the project may affect listed or proposed species and/or designated or proposed critical habitat. Recommended contents of a Biological Assessment are described at 50 CFR 402.12.

If a Federal agency determines, based on the Biological Assessment or biological evaluation, that listed species and/or designated critical habitat may be affected by the proposed project, the agency is required to consult with the Service pursuant to 50 CFR 402. In addition, the Service recommends that candidate species, proposed species and proposed critical habitat be addressed within the consultation. More information on the regulations and procedures for section 7 consultation, including the role of permit or license applicants, can be found in the "Endangered Species Consultation Handbook" at:

http://www.fws.gov/endangered/esa-library/pdf/TOC-GLOS.PDF

Please be aware that bald and golden eagles are protected under the Bald and Golden Eagle Protection Act (16 U.S.C. 668 et seq.), and projects affecting these species may require development of an eagle conservation plan (http://www.fws.gov/windenergy/eagle_guidance.html). Additionally, wind energy projects should follow the wind energy guidelines (http://www.fws.gov/windenergy/) for minimizing impacts to migratory birds and bats.

Guidance for minimizing impacts to migratory birds for projects including communications towers (e.g., cellular, digital television, radio, and emergency broadcast) can be found at: http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/towers.htm; http://www.towerkill.com; and http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/comtow.html.

We appreciate your concern for threatened and endangered species. The Service encourages Federal agencies to include conservation of threatened and endangered species into their project planning to further the purposes of the Act. Please include the Consultation Tracking Number in the header of this letter with any request for consultation or correspondence about your project that you submit to our office.

Attachment(s):
- Official Species List
Official Species List

This list is provided pursuant to Section 7 of the Endangered Species Act, and fulfills the requirement for Federal agencies to "request of the Secretary of the Interior information whether any species which is listed or proposed to be listed may be present in the area of a proposed action".

This species list is provided by:

New England Ecological Services Field Office
70 Commercial Street, Suite 300
Concord, NH 03301-5094
(603) 223-2541
Project Summary
Consultation Code: 05E1NE00-2021-SLI-0854
Event Code: 05E1NE00-2021-E-02578
Project Name: Bradley International Airport TW E Relocation Project
Project Type: TRANSPORTATION
Project Description: The project consists of reconfiguring/relocating and reconstructing TW E partially within the same footprint of the existing decommissioned Runway 1-19 pavement. New intersection points will be constructed at each end of the proposed TW E. The overall project will result in a net reduction of approximately 1.42 acres of pavement surfaces. The proposed project is located on the existing airfield and will not require any tree removal. The overall project is approximately 27.9 acres in size.

Project Location:
Approximate location of the project can be viewed in Google Maps: https://www.google.com/maps/@41.9380247,-72.67966415695193,14z

Counties: Hartford County, Connecticut
Endangered Species Act Species
There is a total of 0 threatened, endangered, or candidate species on this species list.

Species on this list should be considered in an effects analysis for your project and could include species that exist in another geographic area. For example, certain fish may appear on the species list because a project could affect downstream species.

IPaC does not display listed species or critical habitats under the sole jurisdiction of NOAA Fisheries1, as USFWS does not have the authority to speak on behalf of NOAA and the Department of Commerce.

See the "Critical habitats" section below for those critical habitats that lie wholly or partially within your project area under this office's jurisdiction. Please contact the designated FWS office if you have questions.

\begin{enumerate}
\item NOAA Fisheries, also known as the National Marine Fisheries Service (NMFS), is an office of the National Oceanic and Atmospheric Administration within the Department of Commerce.
\end{enumerate}

Critical habitats
THERE ARE NO CRITICAL HABITATS WITHIN YOUR PROJECT AREA UNDER THIS OFFICE'S JURISDICTION.
APPENDIX C: 2020 SURVEY REPORT (RARE SPECIES)
2020 SURVEY REPORT

Bradley International Airport (BDL)
Taxiway E
Windsor Locks, Connecticut

November 2020
File No. 15.0166708.01

PREPARED FOR:
McFarland Johnson
53 Regional Drive
Concord, NH, 03301

GZA GeoEnvironmental, Inc.
1350 Main Street, Suite 1400 | Springfield, MA 01103
413-726-2100

Offices Nationwide
www.gza.com

Copyright© 2020 GZA GeoEnvironmental, Inc.
Habitat Assessment Report and Rare Species Survey
for
Bradley International Airport Taxiway E Reconstruction
2020 Field Season

Introduction

Bradley International Airport (BDL) (“Site”) is preparing for work associated with the reconstruction of Taxiway E (the “Project”). In support of the project, Biologists from GZA GeoEnvironmental, Inc. (GZA), conducted baseline surveys of the proposed work areas (Survey Area). The Survey Area is essentially the triangular shaped isolated grassland between Taxiway E and the Runway 6-24 and 15-33 intersection along with some areas on the eastern side of Taxiway E. This project is separate from the larger Rare Species Master Plan (RSMP) update and associated surveys that are in-process; however, some of the field data was gathered as part of the RSMP survey effort and was used in preparing this report. The airport is documenting habitat for several rare species as identified by NDDB and listed below:

Invertebrates

- *Brachinus cyanipennis* - Bombardier beetle SC
- *Cicindela formosa generosa* - Big sand tiger beetle SC
- *Harpalus erraticus* - Ground beetle SC
- *Hetaerina americana* - American rubyspot T

Moths

- *Euchlaena madusaria* - Scrub euchlaena T
- *Eumacaria latiferrugata* - Brown-bordered geometer T
- *Euxoa violaris* - Violet dart moth SC
- *Grammia phyllira* - Phyllira tiger moth E
- *Schinia spinosae* - Spinose flower moth SC
- *Zanclognatha martha* - Pine barrens zanclognatha T

Plants

- *Carex davisii* - Davis’ sedge T
- *Crocanthemum propinquum* - Low frostweed SC

Avifauna

- *Ammodramus savannarum* - Grasshopper sparrow E
- *Bartramia longicauda* - Upland sandpiper E
- *Dolichonyx oryzivorus* - Bobolink SC
- *Eremophila alpestris* - Horned lark E
- *Falco sparverius* - American kestrel SC
- *Passerculus sandwichensis* - Savannah sparrow SC
- *Pooecetes gramineus* - Vesper sparrow E
- *Sturnella magna* - Eastern meadowlark T
- *Toxostoma rufum* - Brown thrasher SC

Reptiles

- *Terrapene carolina carolina* - Eastern box turtle SC
- *Heterodon platirhinos* - Eastern hognose snake SC

As part of our assessment we evaluated the Survey Area for the presence of the above species based on habitat, as well as site surveys for the two listed rare plant species. This report documents our findings of the Survey Area.
Survey Results

Natural Community Assessment

GZA reviewed the plant communities onsite and mapped several discrete natural communities within and proximal to the Survey Area. These are depicted in Figure 1 and detailed below.

Warm Season Grasslands and Sand Barrens

Warm Season Grasslands: This community is mostly high quality, warm season grassland, with up to 20% of these areas being open sand or sparsely vegetated sand and the remainder being predominately warm season grassland species with some small patches (<5%) of cool season grassland or weedy species. Vegetation height varies from short cropped from routine airport maintenance (approximately 2” in height) to mature grassland up to 24” in height. The dominant species across all mapped areas is little bluestem grass (*Schizachyrium scoparium*), making up >50% of the vegetative matrix. Bluestem is allowed to grow taller in the interior areas of the Survey Area and is more routinely cut near the runway/taxiway edges. Other common and notable species include blue curl (*Trichostema dichotomum*), orange grass (*Hypericum gentianoides*), Bulbostis, frostweeds (*Crocanthemum spp.*), baptisia (*Baptisia tinctoria*), sand sedge (*Cyperus filiculmis*), dewberry (*Rubus flagellaris*), birds foot violet (*Viola pedata*), sweet everlasting (*Gnaphalium obtusifolium*), rabbits foot clover (*Trifolium arvense*), birds foot violet (*Viola pedata*), sweet everlasting (*Gnaphalium obtusifolium*), rabbits foot clover (*Trifolium arvense*), lichen (*Cladonia rangiferina*), hair capped moss (*Polytrichum species*), bracted plantain (*Plantago aristata*), red top (*Agrostis gigantea*), wood sorrel (*Oxalis stricta*), asters (*Symphotrichum spp.*), and goldenrods (*Solidago nemoralis*). A few shrub species are present including a few short-cropped (from maintenance) scrub oaks (*Quercus ilicifolia*), lowbush blueberry (*Vaccinium angustifolium*), and juniper (*Juniperus communis*). In the areas in and near the open sand, some small patches of higher quality sandplain grassland / sand barrens are present.

Warm Season-Cool Season Grassland Matrix: These areas are a relatively equal mix of warm and cool season grassland and forb species. Some patches of open sand are present; however, they are usually small, disjunct areas that comprise less than 5% of the overall community. These areas are either a mosaic of small patches of either warm season or cool season grassland, or areas where species indicative of both grassland types are present and located where warm and cool season areas transition to one another. These areas have the highest plant diversity on the airfield with most species of both the cool and warm season assemblages represented. In general, some of the species most adapted to warm season conditions and indicators of high quality sand barren habitat are lacking, such as: *Baptisia*, blue curl, birds foot violet, pinweeds (*Leche asp.*) and frostweeds (*Helianthemum canadense*). These species require less competition and are absent from these areas. Cool season and weedy species are prevalent and often intermixed with the warm season species. Common and dominant species here include little bluestem, orange grass, panic grasses (*Panicum depauperatum*), dewberry, crabgrass (*Digitaria sanguinalis*), fescues (*Festuca sp.*) and purple lovegrass (*Eragrostis spectabilis*).

Cool Season Grassland with some Warm Season Grassland Components: This community is dominated almost entirely by cool season grasses. Some warm season components may be mixed in, mainly little bluestem; however, it is less than 20% of the vegetative matrix. The cool season
species are outcompeting the warm season species in these areas. Soils here are richer with a thicker topsoil which supports more cool season plants. Open ground is mostly absent with a thick groundcover and thick thatch also present. Where present, open ground is not sandy. Common and dominant species include fescues, red top, English plantain (*Plantago lanceolata*), red clover (*Trifolium pratense*), white clover (*Trifolium repens*), rabbits foot clover, ragweed (*Ambrosia artemisifolia*), deer tongue grass (*Panicum clandestinum*), crabgrass, cinquefoil (*Potentilla canadensis*), wood sorrel, fleabane (*Erigeron sp.*), spotted knapweed (*Centaurea maculosa*), asters, horseweed (*Conyza canadensis*) and yarrow (*Achillea millefolium*).

Rare Plant Survey

Methods

GZA surveyed for the two state-listed plants identified by CT DEEP as potentially being found on site: Davis’ sedge (*Carex davisii*) and low frostweed (*Crocanthemum propinquum*). Areas of potential habitat were identified, and surveys focused on the areas of potential habitat. In total, two (2) man days of effort will be employed for these species of rare plant in the Survey Area. Surveys were conducted by walking parallel transects in June and September within areas of potential habitat. This timing was based on flowering phenology. The habitat descriptions and results of the survey for each species are described below and are also depicted in Figure 1.

Low Frostweed

Low frostweed inhabits open, sandy soils of woodlands, roadsides, clearings, dry fields, and sandplains. A similar species, hoary frostweed (*Crocanthemum bicknellii*), can be found in similar habitats in Connecticut and is differentiated from *C. propinquum* by the outer sepals of the cleistogamous flowers. *C. propinquum*’s outer sepals are apically distinct for 0.2-0.5mm with a tip that is 1-2 times as wide as long, while *C. bicknellii*’s sepals are apically distinct for (0.3-) 0.6-1.2 (-1.8) mm, and the tip is mostly 3-5 times as wide as long. Also, the capsule of the cleistogamous flowers in *C. propinquum* is somewhat rounded in cross-section, whereas the capsule of the cleistogamous flowers in *C. bicknellii* is sharply three-angled. Two other species of *Crocanthemum* within the region are *C. canadense* and *C. dumosum* (also a state-listed species of special concern); however, they are easily differentiated by the number of seeds in the capsules of the cleistogamous flowers (1–2 seeds in *C. propinquum* and *C. bicknellii* and 5–14 seeds in *C. canadense* and *C. dumosum*), and that their petal bearing flowers are few and often surpassed by lateral branches while *C. propinquum* and *bicknellii* have many flowers and are often not overpassed by lateral branches (Haines 2011 *Flora Novae Angliae*).

Overall, most of the Survey Area is considered low quality habitat for low frostweed, mainly due to the density of the little bluestem, lack of open ground and thatch layer. The areas closest to the runways and taxiways are the least conducive due to the frequent mowing, dense vegetation, and presence of a thatch layer. However, the quality of the habitat differs across the Survey Area with some higher quality habitats present in the areas of open sand and the areas of sparse vegetation around the edges of these open sand patches. All areas of warm season grassland and mixed warm-cool season grassland were surveyed as depicted in Figure 1. Some areas of lower quality habitat, and areas very close to the active runway were not surveyed; however, characterization of the habitat quality was made.
GZA located several small populations of *C. propinquum* and *C. canadense*. These locations are shown in Figure 1 as well as areas of highest habitat quality and potential for this species also shown.

Davis Sedge

Davis’ sedge (*Carex davisii*) is found in riparian forests, woodlands and meadow habitats often associated with calcareous soils.

There was no supportive habitat for Davis’ sedge found within the Survey Area (wetland habitats). Therefore, no Davis’ sedge nor potential habitat for this species is present within the Survey Area.

Rare Invertebrates

Several species of rare lepidoptera, beetles and odonates are known to potentially inhabit the site. Based on a lack of suitable habitat present in the Survey Area, presence of several of the species listed on Page 1 can be ruled out (American Rubyspot, pine barrens zanclognatha, and spinose flower moth). Further studies have been conducted for species of rare invertebrates at the Site, including a previous study by Dr. David Wagner (Insect Fauna of Bradley Airport, 2003) as well as follow-up studies by GZA (results pending as part of the RSMP work).

Of the six listed moth species, four are known to feed on “grasses” and one, sandplain euchlaena, has an association with heath (low bush blueberry in this instance). Both host plant types are present in the Survey Area. Both the 2003 and 2020 studies found these species inhabiting these grassland habitats, and the grassland habitats appear relatively unchanged since the 2003 study. Therefore, these grassland areas provide habitat to the *Euchlaena madusaria, Grammia phyllira, Apamea burgessi* and *Euxoa violaris*.

Tiger beetle species were surveyed for in 2003 and 2020 and potential habitats are also present in the Survey Area. Three species of tiger beetles were found at the Site in the 2003 study, including the rare big sand tiger beetle (*Cicindela formosa*), *C. scutellaris*, and *C. punctulata*. The 2020 GZA survey found four species of tiger beetle at the Site, including the rare big sand tiger beetle, the other two species found in 2003, as well as *C. sexgutata*. None of the big sand tiger beetle were found in the Taxiway E Survey Area and potential habitat is limited to small, disconnected, patches of open sand. Overall, habitat quality and findings suggest that the Survey Area is not high-quality tiger beetle habitat for big sand tiger beetle, and likely not supportive habitat. *Cicindela punctulata*, a more common tiger beetle species was found in both 2003 and 2020 in the Survey Area.

Other ground beetle species including *Harpalus erraticus* and *Brachinus cyanipennis* have potential supportive habitats on the airfield based on the sandy soils and amount of open ground present between the grasses. The interior area of the Survey Area with the taller grasses and less frequent mowing regime are better quality habitat compared to the edges by the pavement that are shorter cropped and densely vegetated. Also, the areas of cool season grasses or mixed warm-cool season grasslands are much lower quality habitat for both ground beetle species. The 2003 Wagner study surveyed for these beetles, the results were not available in the material reviewed.
One odonate, the American rubyspot, was listed as potentially being present on the airfield. This species inhabits stream and riparian habitats. This habitat is absent and not proximal to the Survey Area. Therefore, the American rubyspot is assumed to be absent from the Survey Area.

Overall, based on the past surveys and habitats present, the Survey Area contains viable habitat for four of the six listed moth species. Tiger beetle habitat is of lower quality for the rare tiger beetle but present to some degree in the warm season grassland areas as this is also habitat for the other two species of ground beetles.

Grassland Birds

Eight species of grassland birds are noted, as is one species of shrubland bird. The lack of shrubs or nearby shrub habitat provides no habitat for the brown thrasher (*Toxostoma rufa*) within the Survey Area. Habitat for the remaining species of grassland bird is present. Specific surveys for these birds were not conducted, as all are known to inhabit the airfield. However, the quality of the habitats for each species was assessed which corroborated the 2003 assessment for these species. In addition, multiple sightings of several of these species were made during the breeding season, including observations of grasshopper sparrow, vesper sparrow, savannah sparrow, upland sandpiper, eastern meadowlark, horned lark and American kestrel. These sightings confirm the continued occupancy of the site by grassland bird species. The only species identified by NDDB that was not observed in or near the Survey Area was the bobolink.

Grasshopper sparrow tends to forage on bare ground and is known to consume insects. Horned lark forage in bare fields and short vegetation; they feed mostly on weed and grass seeds but capture insects. The vesper sparrow prefers low to sparse grass cover for foraging but will forage in higher vegetation as well. Upland sandpiper tends to forage on shorter vegetation seeking out insect prey. Savannah sparrows generally prefer more dense grass areas for forage and nesting and also feed on insects. Kestrels forage on grasshoppers and other large insects as well as small mammals. The grassland habitats that support forage and nesting for the species listed above are present throughout the Survey Area, and prey surveys conducted by Wagner in 2003 found that many insect taxa are present to support these species. This was corroborated by GZA in 2020 where the same taxa were found in blacklight, pitfall and malaise traps in this area.

Reptiles

Two species of rare reptile are reported associated with the Airport. These include the Eastern Box Turtle and Eastern Hognose Snake. Both species are associated with sandy habitats, particularly the hognose snake, with both using transitional shrub ecotones within the sandplain habitat. Suitable habitat for either species is not present within the Survey Area. The areas are maintained as open, mown grassland. While the physical features (sandy soil) is present for hognose snake burrowing and box turtle nesting, supportive cover and forage habitat is not present nearby and is separated from these habitats by large active and paved areas of the airfield. Suitable habitat and potential occurrence of these two species in the Survey Area is absent.
Summary

Overall, of all the species listed by NDDB as potentially being present at BDL, the Survey Area provides habitat for eight species of grassland bird, four species of rare moth, and has potential habitat for the rare tiger beetles, ground beetle and confirmed low frostweed populations. The highest quality habitat is the warm season grassland habitats depicted in Figure 1, in particular the areas of open sand which have the highest potential to support the rare plant and ground beetles. Grassland birds would use all grassland areas (warm and cool season) with the warm season areas of highest habitat value.

Table 1: Rare Species Likelihood of Occupation of TW-E Survey Area

<table>
<thead>
<tr>
<th>Species</th>
<th>Habitats Present</th>
<th>High Quality Habitat Present</th>
<th>Habitat Occupied</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brachinus cyanipennis</td>
<td>Yes</td>
<td>No</td>
<td>Unknown</td>
<td>Low to moderate quality habitat present</td>
</tr>
<tr>
<td>Harpalus erraticus</td>
<td>Yes</td>
<td>No</td>
<td>Unknown</td>
<td>Low to moderate quality habitat present</td>
</tr>
<tr>
<td>Cicindela formosa generosa</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Low to moderate quality habitat present</td>
</tr>
<tr>
<td>Hetaerina americana</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No habitat present</td>
</tr>
<tr>
<td>Euchlaena madusaria</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Dense areas of warm season grassland</td>
</tr>
<tr>
<td>Eumacaria latiferrugata</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No shrub areas present</td>
</tr>
<tr>
<td>Euxoa violaris</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Dense areas of warm season grassland</td>
</tr>
<tr>
<td>Grammia phyllira</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Dense areas of warm season grassland</td>
</tr>
<tr>
<td>Schinia spinosae</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Dense areas of warm season grassland</td>
</tr>
<tr>
<td>Zanclognatha martha</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No shrub areas present</td>
</tr>
<tr>
<td>Carex davisii</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No wetlands habitat present</td>
</tr>
<tr>
<td>Crocanthemum propinquum</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Low quality habitat present throughout, patches of high quality habitat present</td>
</tr>
<tr>
<td>Ammodramus savannarum</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Dense areas of warm season grassland</td>
</tr>
<tr>
<td>Bartramia longicauda</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Dense areas of warm season grassland</td>
</tr>
<tr>
<td>Dolichonyx oryzivorus</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Dense areas of warm season grassland</td>
</tr>
<tr>
<td>Eremophila alpestris</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Dense areas of warm season grassland</td>
</tr>
<tr>
<td>Falco sparverius</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Dense areas of warm season grassland</td>
</tr>
<tr>
<td>Passerculus sandwichensis</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Dense areas of warm season grassland</td>
</tr>
<tr>
<td>Poecetes gramineus</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Dense areas of warm season grassland</td>
</tr>
<tr>
<td>Sturnella magna</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Dense areas of warm season grassland</td>
</tr>
<tr>
<td>Toxostoma rufum</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No shrub areas present</td>
</tr>
<tr>
<td>Terrapene carolina carolina</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No connection to supportive habitats</td>
</tr>
<tr>
<td>Heterodon platirhinos</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No connection to supportive habitats</td>
</tr>
</tbody>
</table>
TW-E Mixed warm/cool season grassland

TW – E warm season grassland with some open sand
SITE PHOTOS

Low Frostweed – TW-E
TW-E open sand (frostweed habitat)
TABLE 2: Master List Flora of BDL Airport TW-E Area (2020)

<table>
<thead>
<tr>
<th>scientific name *</th>
<th>common name</th>
<th>morph</th>
<th>Warm Season</th>
<th>Mix</th>
<th>Cool Season</th>
</tr>
</thead>
<tbody>
<tr>
<td>Achillea millefolium</td>
<td>yarrow</td>
<td>herb</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Agrostis gigantea</td>
<td>red top-grass</td>
<td>graminoid</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Ambrosia artemisiifolia</td>
<td>ragweed</td>
<td>herb</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Anaphalis margaritacea</td>
<td>pearly everlasting</td>
<td>herb</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Aristida dichotoma</td>
<td>churchmouse-three-awn</td>
<td>graminoid</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Artemisia vulgaris</td>
<td>common mugwort</td>
<td>herb</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Asclepias amplexicaulis</td>
<td>Wavy leaf Milkweed</td>
<td>herb</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Asclepias tuberosa</td>
<td>butterfly weed</td>
<td>herb</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Baptisia tinctoria</td>
<td>wild indigo</td>
<td>herb</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Carex pensylvanica</td>
<td>pennsylvania sedge</td>
<td>graminoid</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Centaurea maculosa</td>
<td>spotted knapweed</td>
<td>herb</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Cirsium vulgare</td>
<td>bull thistle</td>
<td>herb</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Cladonia rangiferina</td>
<td>reindeer lichen</td>
<td>lichen</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Comandra umbellata</td>
<td>bastard toadflax</td>
<td>herb</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Conyza canadensis</td>
<td>horseweed</td>
<td>herb</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Cuphea viscosissima</td>
<td>sand sedge</td>
<td>herb</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Danthonia spicata</td>
<td>poverty grass</td>
<td>graminoid</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Desmodium ciliare</td>
<td>hairy small-leaf ticktrefoil</td>
<td>herb</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Dianthus armeria</td>
<td>Deptford pink</td>
<td>herb</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Dichanthelium (Panicum) clandestinum</td>
<td>deer-tongue grass</td>
<td>graminoid</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Dichanthelium (Panicum) depauperatum</td>
<td>a panic grass</td>
<td>graminoid</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Dichanthelium (Panicum) dichotomum</td>
<td>a panic grass</td>
<td>graminoid</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Digitaria sanguinalis</td>
<td>crab grass</td>
<td>graminoid</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Erigeron strigosus</td>
<td>prairie fleabane</td>
<td>herb</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Eupatorium hyssopifolium</td>
<td>hyssop-leaved boneset</td>
<td>herb</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Euphorbia supina</td>
<td>milk purslane</td>
<td>herb</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Eurybia (Aster) linariifolius</td>
<td>stiff aster</td>
<td>herb</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Euthamia caroliniana (tenuifolia)</td>
<td>slender-leaved goldenrod</td>
<td>herb</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Euthamia graminifolia</td>
<td>lance-leaved goldenrod</td>
<td>herb</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Festuca ovina</td>
<td>sheep fescue</td>
<td>graminoid</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Festuca rubra</td>
<td>red fescue</td>
<td>graminoid</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Fragaria virginiana</td>
<td>wild strawberry</td>
<td>herb</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Gaylussacia baccata</td>
<td>black huckleberry</td>
<td>shrub</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Glauxalium obtusifolium</td>
<td>sweet everlasting</td>
<td>herb</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Crocanthemum canadense</td>
<td>frostweed (a rockrose)</td>
<td>herb</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Crocanthemum propinquum</td>
<td>low frostweed</td>
<td>herb</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Hieracium pilosella</td>
<td>mouse ear</td>
<td>herb</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Hudsonia tomentosa</td>
<td>heather</td>
<td>shrub</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Hypericum gentianoides</td>
<td>orange-grass</td>
<td>herb</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Hypericum perforatum</td>
<td>common St. Johnswort</td>
<td>herb</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Hypochaeris radicata</td>
<td>cat's ear</td>
<td>herb</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Ionactis (Aster) linariifolius</td>
<td>stiff aster</td>
<td>herb</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Juncus tenuis</td>
<td>path rush</td>
<td>graminoid</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Juniperus communis</td>
<td>common juniper</td>
<td>shrub</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Krigia virginica</td>
<td>dwarf dandelion</td>
<td>herb</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Lechea maritima</td>
<td>beach pineweed</td>
<td>herb</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Lechea minor</td>
<td>lesser pineweed</td>
<td>herb</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Lechea sp.</td>
<td>a pineweed</td>
<td>herb</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Lespedeza capitata</td>
<td>round-headed bush clover</td>
<td>herb</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Linaria canadensis</td>
<td>blue toadflax</td>
<td>herb</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Lotus corniculatus</td>
<td>birdsfoot trefoil</td>
<td>herb</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Melampyrum lineare</td>
<td>cowwheat</td>
<td>herb</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>scientific name *</td>
<td>common name</td>
<td>morph</td>
<td>Warm Season</td>
<td>Mix</td>
<td>Cool Season</td>
</tr>
<tr>
<td>------------------</td>
<td>-------------------</td>
<td>-----------------</td>
<td>-------------</td>
<td>-----</td>
<td>-------------</td>
</tr>
<tr>
<td>Oxalis stricta</td>
<td>yellow wood-sorrel</td>
<td>herb</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Panicum virgatum</td>
<td>switchgrass</td>
<td>graminoid</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Paspalum setaceum var. setaceum</td>
<td>sand paspalum</td>
<td>graminoid</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plantago aristata</td>
<td>bracted plain</td>
<td>herb</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Plantago lanceolata</td>
<td>English plantain</td>
<td>herb</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Polygala nuttallii</td>
<td>Nuttall's milkwort</td>
<td>herb</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polygala polygama</td>
<td>racemed milkwort</td>
<td>herb</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polygona articulata</td>
<td>sand jointweed</td>
<td>herb</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polytrichum species</td>
<td>a haircap moss</td>
<td>moss</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Potentilla canadensis</td>
<td>dwarf cinquefoil</td>
<td>herb</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quercus ilicifolia</td>
<td>scrub oak</td>
<td>shrub</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Rhus radicans</td>
<td>poison ivy</td>
<td>vine</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Rubus flagellaris</td>
<td>prickly dewberry</td>
<td>vine</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Rumex acetosella</td>
<td>sheep sorrel</td>
<td>herb</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Schizachyrium scoparium</td>
<td>little bluestem</td>
<td>graminoid</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Securigera varia</td>
<td>crown vetch</td>
<td>herb</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Sericocarpus asteroides (Aster paternus)</td>
<td>toothed white-topped aster</td>
<td>herb</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Sericocarpus linifolius (Aster solidagineus)</td>
<td>narrow-leaved white-topped aster</td>
<td>herb</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Setaria sp.</td>
<td>a foxtail</td>
<td>graminoid</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Solidago nemoralis</td>
<td>gray goldenrod</td>
<td>herb</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Solidago rugosa</td>
<td>rough-stemmed goldenrod</td>
<td>herb</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Symphyotrichum (Aster) dumosus</td>
<td>bushy aster</td>
<td>herb</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Symphyotrichum (Aster) ericoidea</td>
<td>white heath aster</td>
<td>herb</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Taraxacum officinale</td>
<td>dandelion</td>
<td>herb</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Trichostema dichotomum</td>
<td>blue curls</td>
<td>herb</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Trifolium agragrum</td>
<td>hop clover</td>
<td>herb</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Trifolium arvense</td>
<td>rabbit foot clover</td>
<td>herb</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Trifolium pratense</td>
<td>red clover</td>
<td>herb</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Trifolium repens</td>
<td>white clover</td>
<td>herb</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Vaccinium angustifolium</td>
<td>common lowbush blueberry</td>
<td>shrub</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Verbascum thapsus</td>
<td>common mullein</td>
<td>herb</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Viola pedata</td>
<td>bird’s foot violet</td>
<td>herb</td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>
APPENDIX D: PROJECT PLANS
BID DOCUMENTS
PIPE TABLE

<table>
<thead>
<tr>
<th>STRUCTURE</th>
<th>NAME</th>
<th>PIPE</th>
<th>NORTHLING</th>
<th>EASTING</th>
</tr>
</thead>
<tbody>
<tr>
<td>EX-01</td>
<td>YD-01</td>
<td>S1</td>
<td>158.12</td>
<td>159.12</td>
</tr>
<tr>
<td>EX-01</td>
<td>YD-02</td>
<td>S1</td>
<td>158.12</td>
<td>159.12</td>
</tr>
<tr>
<td>EX-01</td>
<td>YD-03</td>
<td>S1</td>
<td>158.12</td>
<td>159.12</td>
</tr>
<tr>
<td>EX-01</td>
<td>YD-04</td>
<td>S1</td>
<td>158.12</td>
<td>159.12</td>
</tr>
<tr>
<td>EX-01</td>
<td>YD-05</td>
<td>S1</td>
<td>158.12</td>
<td>159.12</td>
</tr>
<tr>
<td>EX-01</td>
<td>YD-06</td>
<td>S1</td>
<td>158.12</td>
<td>159.12</td>
</tr>
<tr>
<td>EX-01</td>
<td>YD-07</td>
<td>S1</td>
<td>158.12</td>
<td>159.12</td>
</tr>
</tbody>
</table>

LEGEND:
- PROPOSED MAJOR CONTOUR
- PROPOSED MINOR CONTOUR
- EXISTING MAJOR CONTOUR
- EXISTING MINOR CONTOUR
- LIMIT OF DISTURBANCE
- PROPOSED CATCH BASIN
- EXISTING CATCH BASIN
- PIPE
- DRAIN MANHOLE
- INLET PROTECTION BAG
- ADJUST DRAIN STRUCTURE
- ADJUST ELECTRICAL MANHOLE

NOTES:
1. FOR CONSTRUCTION SAFETY AND PLANNING SEE SHEETS DATED TO DATE.
2. FOR DRAINAGE SEE SHEET DATED TO DATE.
3. FOR ELECTRICAL LAYOUT SEE SHEETS DATED TO DATE.
4. FOR ELECTRICAL LAYOUT SEE SHEETS DATED TO DATE.
5. FOR ELECTRICAL LAYOUT SEE SHEETS DATED TO DATE.
6. FOR ELECTRICAL LAYOUT SEE SHEETS DATED TO DATE.
7. FOR ELECTRICAL LAYOUT SEE SHEETS DATED TO DATE.
8. FOR ELECTRICAL LAYOUT SEE SHEETS DATED TO DATE.
9. FOR ELECTRICAL LAYOUT SEE SHEETS DATED TO DATE.
10. FOR ELECTRICAL LAYOUT SEE SHEETS DATED TO DATE.

REFERENCES:
- SEE DETAIL ON SHEET DATED TO DATE.

SCALE: 1" = 50' 2" = 100'
DATE: MARCH 2021
LOCATION: BRADLEY INTERNATIONAL AIRPORT
CONSTRUCTION ENTRANCE SHALL BE INSTALLED IN A PROPOSED MAJOR CONTOUR.
INSTALL NEW INLET PROTECTION BAG (TYP) TO CONNECT NEW DRAIN PIPE INTO EXISTING CATCH BASIN. SEE NOTE 7.
1. INSTALL NEW DRAIN Pipe (TYPE) CONNECT NEW DRAIN Pipe INTO EXISTING DRAIN PIPE CONNECTIONS TO NEW DRAIN Pipe SHALL BE INCIDENTAL TO REMOVAL.
2. INSTALL NEW CATCH BASIN (TYPE) SEE STRUCTURAL TABLE ON SHEET GR-01 INSTALL NEW CATCH BASIN TO BE INCIDENTAL TO ITEM D-751-5.1.
3. 10-INCH DRAIN LINE TO THE SOUTH. PIPE CONNECTIONS TO NEW CATCH BASIN. SEE NOTE 7
4. INSTALL NEW EROSION CONTROL LOG (TYP) INSTALL NEW CATCH BASIN SEE STRUCTURAL TABLE ON SHEET GR-01 INSTALL NEW CATCH BASIN TO BE INCIDENTAL TO ITEM D-751-5.1.
5. INSTALL NEW INLET PROTECTION BAG INSTALL NEW CATCH BASIN SEE STRUCTURAL TABLE ON SHEET GR-01 INSTALL NEW CATCH BASIN TO BE INCIDENTAL TO ITEM D-751-5.1.
6. INSTALL NEW CATCH BASIN SEE STRUCTURAL TABLE ON SHEET GR-01 INSTALL NEW CATCH BASIN TO BE INCIDENTAL TO ITEM D-751-5.1.
7. INSTALL NEW CATCH BASIN SEE STRUCTURAL TABLE ON SHEET GR-01 INSTALL NEW CATCH BASIN TO BE INCIDENTAL TO ITEM D-751-5.1.
8. INSTALL NEW CATCH BASIN SEE STRUCTURAL TABLE ON SHEET GR-01 INSTALL NEW CATCH BASIN TO BE INCIDENTAL TO ITEM D-751-5.1.
9. INSTALL NEW CATCH BASIN SEE STRUCTURAL TABLE ON SHEET GR-01 INSTALL NEW CATCH BASIN TO BE INCIDENTAL TO ITEM D-751-5.1.
10. INSTALL NEW INLET PROTECTION BAG INSTALL NEW CATCH BASIN SEE STRUCTURAL TABLE ON SHEET GR-01 INSTALL NEW CATCH BASIN TO BE INCIDENTAL TO ITEM D-751-5.1.
11. INSTALL NEW INLET PROTECTION BAG INSTALL NEW CATCH BASIN SEE STRUCTURAL TABLE ON SHEET GR-01 INSTALL NEW CATCH BASIN TO BE INCIDENTAL TO ITEM D-751-5.1.
12. INSTALL NEW INLET PROTECTION BAG INSTALL NEW CATCH BASIN SEE STRUCTURAL TABLE ON SHEET GR-01 INSTALL NEW CATCH BASIN TO BE INCIDENTAL TO ITEM D-751-5.1.
13. INSTALL NEW INLET PROTECTION BAG INSTALL NEW CATCH BASIN SEE STRUCTURAL TABLE ON SHEET GR-01 INSTALL NEW CATCH BASIN TO BE INCIDENTAL TO ITEM D-751-5.1.
14. INSTALL NEW INLET PROTECTION BAG INSTALL NEW CATCH BASIN SEE STRUCTURAL TABLE ON SHEET GR-01 INSTALL NEW CATCH BASIN TO BE INCIDENTAL TO ITEM D-751-5.1.
15. INSTALL NEW INLET PROTECTION BAG INSTALL NEW CATCH BASIN SEE STRUCTURAL TABLE ON SHEET GR-01 INSTALL NEW CATCH BASIN TO BE INCIDENTAL TO ITEM D-751-5.1.
16. INSTALL NEW INLET PROTECTION BAG INSTALL NEW CATCH BASIN SEE STRUCTURAL TABLE ON SHEET GR-01 INSTALL NEW CATCH BASIN TO BE INCIDENTAL TO ITEM D-751-5.1.
MATCH GRADE INTO EXISTING TAXILANE

CONSTRUCT 1' GAP AT EDGE OF PavEMENT (TYP),

CONSTRUCT 1' GAP AT LIMIT OF DISTURBANCE (TYP),

INSTALL NEW INLET PROTECTION BAG (TYP) (ITEM C-102-5.2)

MATCH GRADE INTO EXISTING TAXILANE

MATCHLINE STA 11+35 (SEE SHEET GR-02)

MATCHLINE STA 23+85 (SEE SHEET GR-04, GR-05)

MATCHLINE STA 525+00 (SEE SHEET GR-06)

LEGEND:
- PROPOSED MAJOR CONTOUR
- PROPOSED MINOR CONTOUR
- EXISTING MAJOR CONTOUR
- EXISTING MINOR CONTOUR
- LIMIT OF DISTURBANCE
- DRAIN PIPE
- CATCH BASIN
- DRAIN MANHOLE
- ADJUST DRAIN STRUCTURE
- INLET PROTECTION BAG
- ADJUST ELECTRICAL MANHOLE

NOTES:
1. SEE SHEET GR-01.

MATCHLINE STA 524+01.31 (OFF: 0.00')

MATCHLINE STA 703+18.00 (OFF: 0.00')

MATCHLINE STA 704+00.00 (OFF: 0.00')

INSTALL NEW CATCH BASIN S4 (SEE STRUCTURE SCHEDULE ON SHEET GR-07)

SEE DETAIL ON SHEET GR-03

SEE NOTE 2 (ITEM D-751-5.2)

INSTALL NEW INLET PROTECTION BAG (TYP) (ITEM C-102-5.2)

MATCH GRADE INTO EXISTING TAXILANE

PROPOSED CONTOURS (TYP)

EXISTING CONTOURS (TYP)

SCALE

0 40 80 120 FT

DATE: [dd-mm-yyyy]

DESCRIPTION:

CONTRACTOR:

PHOTO:

CHECKED:

DRAWN:

PROJECT:

DESIGN:

SCALe:

GRADING, DRAINAGE, AND EROSION CONTROL PLAN (3 OF 6)

CONSTRUCT TAXIWAY E

BID DOCUMENTS

K:\CAA\T-18621.04 CONSTRUCT TW E\DRAW\DRAWINGS\SHEET FILES\18621.04-GRAD.DWG
1. See Sheet GR-01 for additional notes.
2. Install new 36" concrete drain pipe between existing drain structures at existing inverts. Pipe connections to existing drain structures shall be incidental to Form GL-101, See Sheet GE-01 for existing inverts.

Construc 1' Drop at Edge of Pavement (Typ)

Limit of Disturbance (Typ)

Existing Contours (Typ)

Proposed Contours (Typ)

Matchline (See Sheet GR-03)

Matchline STA 23+85 (See Sheet GE-03)

Matchline (See Sheet GR-06)

Notes:

Legend:

- PROPOSED MAJOR CONTOUR
- PROPOSED MINOR CONTOUR
- EXISTING MAJOR CONTOUR
- EXISTING MINOR CONTOUR
- LIMIT OF DISTURBANCE
- DRAIN PIPE
- CATCH BASIN
- DRAIN MANHOLE
- ADJUST DRAIN STRUCTURE
- EROSION CONTROL LOG
- ADJUST ELECTRICAL MANHOLE
- INLET PROTECTION BAG

Scale: 1" = 40'

BID DOCUMENTS
NOTES:
1. SEE SHEET GR-01 FOR ADDITIONAL NOTES.
2. REPLACE EXISTING CATCH BASIN, CONNECT TO EXISTING 18-INCH DRAIN LINE TO THE NORTH (EXISTING PIPE REMOVED TO THE SOUTH). PIPE CONNECTIONS TO NEW CATCH BASIN SHALL BE INCIDENTAL TO ITEM D-751-5.2.

EXISTING CONTOURS (TYP)
EXISTING MINOR CONTOUR
EXISTING MAJOR CONTOUR
PROPOSED MINOR CONTOUR
PROPOSED MAJOR CONTOUR
LIMIT OF DISTURBANCE
EROSION CONTROL LOG
INLET PROTECTION BAG
CATCH BASIN
DRAIN MANHOLE
ADJUST DRAIN STRUCTURE
ADJUST ELECTRICAL MANHOLE

MATCHLINE STA 525+00 (SEE SHEET GR-03)
MATCHLINE STA 535+00 (SEE SHEET GR-05)

LEGEND:

INSTALL NEW CATCH BASIN S4
SEE STRUCTURE SCHEDULE ON SHEET GR-01
SEE DETAIL ON SHEET GR-05
SEE NOTE 2 (ITEM D-751-5.2)

CONSTRUCT 1/2 DROP AT EDGE OF PAVEMENT (TYP)

SCALE
1" = 40'
1. Soil erosion and sediment control measures shall be in accordance with federal, state, and local laws and regulations.

2. Recognize that identifying erosion control practices that require additional time and resources may result in reduced negative impacts on water quality. The contractor shall maintain the integrity of all slopes and confined areas as required by federal, state, and local laws and regulations.

3. Erosion control practices shall be shown on the plans with respect to the required construction sequence. Where there is a significant change in the site plan, these practices may be indicated in the field to improve erosion and sediment control.

4. Construction shall proceed at the rate to facilitate installation of erosion control measures and the completion of grading, seeding, and landscaping as soon as possible within a line. The procedure shall result in the exposure of the smallest practical land area at any one time.

5. Prior to any disturbance, existing non-eroded areas with topsoil or planting material shall be removed and stockpiled for restoration of eroded areas.

6. All disturbed upland areas shall have topsoil spread 2'-3' minimum, as required. Any disturbed topsoil that is stockpiled shall be resloped and stockpiled for later use.

7. Maintenance of all erosion control components shall be an ongoing process relative to the required construction sequence.

8. The maximum amount of area to be disturbed and then seeded shall be no more than 5 acres at any one time.

9. The maximum amount of topsoil used to cover erosion shall be 3' minimum.

10. Native grass seed shall be specified in the "Connecticut Erosion and Sediment Control Specifications." The seed shall be planted in accordance with soil test results. If a seed mixture is required, the contractor shall provide a certified seed mixture that meets the requirements of the local soil test results.

11. Inspect and maintain seeding, erosion control, and sediment control practices on a timely basis as permanent measures take effect.

12. Erosion and sediment control practices are shown on the plans with respect to the required construction sequence. Changes in this sequence shall give high priority to the daily and timely installation of erosion control measures and the completion of grading, seeding, and landscaping.

Table 1 - Temporary Upland Stabilization

<table>
<thead>
<tr>
<th>Plant Species</th>
<th>Selection Seed Mix</th>
<th>Seed Rate</th>
<th>Coverage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red Fescue</td>
<td>100% Red Fescue</td>
<td>50 Lbs/1000 Sq.Ft</td>
<td>30 Lbs/1000 Sq.Ft</td>
</tr>
<tr>
<td>NE Native Warm Season Grass Mix</td>
<td>50% Red Fescue, 50% Foxtail Millet</td>
<td>50 Lbs/1000 Sq.Ft</td>
<td>30 Lbs/1000 Sq.Ft</td>
</tr>
</tbody>
</table>

Inlet Protection (Filter Bag) Installation

- Place filter bags in a manner that allows for drainage and prevents the accumulation of sediment.

- Ensure that filter bags are properly attached to the outlet of the catch basin or storm drain.

- Monitor the effectiveness of the filter bags and replace as necessary to maintain effective sediment control.

Stabilized Construction Entrance Detail

- Ensure that all areas are stabilized to prevent erosion and sediment transport.

- Use appropriate materials, such as concrete or asphalt, to ensure a durable and lasting solution.

- Regularly inspect and maintain the stabilization measures to ensure their effectiveness.

Erosion Control Details

- Implement all control measures in accordance with the approved construction plans.

- Regularly inspect and monitor erosion control measures to ensure they are functioning as intended.

- Maintain all erosion control measures until permanent measures are installed.

- Inspect and maintain the stabilization measures to ensure their effectiveness.